INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 5995-6014

Ill-conditioning of finite element poroelasticity equations

Massimiliano Ferronato *, Giuseppe Gambolati, Pietro Teatini

DMMMSA — Department of Mathematical Methods and Models for Scientific Applications, University of Padova, Via Belzoni 7,
35131 Padova, Italy

Received 15 March 2000

Abstract

The solution to Biot’s coupled consolidation theory is usually addressed by the finite element (FE) method thus
obtaining a system of first-order differential equations which is integrated by the use of an appropriate time marching
scheme. For small values of the time step the resulting linear system may be severely ill-conditioned and hence the
solution can prove quite difficult to achieve. Under such conditions efficient and robust projection solvers based on
Krylov’s subspaces which are usually recommended for non-symmetric large size problems can exhibit a very slow
convergence rate or even fail. The present paper investigates the correlation between the ill-conditioning of FE
poroelasticity equations and the time integration step A¢. An empirical relation is provided for a lower bound At of At
below which ill-conditioning may suddenly occur. The critical time step is larger for soft and low permeable porous
media discretized on coarser grids. A limiting value for the rock stiffness is found such that for stiffer systems there is no
ill-conditioning irrespective of At however small, as is also shown by several numerical examples. Finally, the definition
of a different At.; as suggested by other authors is reviewed and discussed. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The time-dependent distribution of displacement and fluid pore pressure in porous media was first
mathematically described by Biot (1941). Biot’s consolidation theory couples the elastic equilibrium
equations with a continuity or mass balance equation which may be solved under appropriate boundary
and initial flow and loading conditions.

The consolidation problem is usually solved in space by a finite element (FE) technique giving rise to a
system of first-order differential equations. The solution to these equations is typically addressed by an
appropriate time marching scheme. The discretization in the time domain may require variable time steps
which may change by several orders of magnitude during the analysis. As a matter of fact, in the early phase
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of consolidation small time steps are needed to obtain a sufficiently accurate solution, while, as the sim-
ulation proceeds, a much larger time step can be used without a great loss of accuracy. Time integration is
usually performed by the well-known 0-method, whose stability and accuracy has been widely discussed by
a number of authors (Booker and Small, 1975; Vermeer and Verruijt, 1981). In particular, Booker and
Small (1975) proved that an implicit time integration scheme with 6 > 0.5 is unconditionally stable even if
the sequence of time steps A¢; is strictly increasing, while the choice 0 < 0.5 is conditionally stable and may
require a very small time step.

Furthermore, the solution to the linear system with a small A may prove quite difficult, as was also
observed by some authors (Ghaboussi and Wilson, 1973; Vermeer and Verruijt, 1981; Reed, 1984; Sloan
and Abbo, 1999). The problems arising from the choice of a small time step were first noted by Ghaboussi
and Wilson (1973) who suggest a criterion for a minimum Af in order to prevent the global system from
becoming ill-conditioned. They point out that ill-conditioning is related to the large difference between the
terms arising from the integration of equilibrium equations and those from the flow equation. A practical
way to avoid ill-conditioning is suggested by Reed (1984) by the use of a scaling factor to reduce the
difference in magnitude of the pivotal elements. A suitable value for the scaling factor is provided by Sloan
and Abbo (1999) who try to equate approximately the size of diagonal terms of the structural equations and
those of the flow equation. One such scaling strategy was implemented in a code by Lewis and Schrefler
(1987).

Although sophisticated direct sparse solvers (Duff et al., 1986) may prove quite efficient for unsymmetric,
non-positive definite matrices, the large dimension of the linear systems generated by the FE method in
realistic consolidation problems (and particularly so in those related to fluid withdrawal) suggests that
iterative methods be used. In particular, projection methods based on Krylov’s subspaces, such as bicon-
jugate gradient stabilized (Bi-CGSTAB) and transpose free quasi-minimal residual (TFQMR) effectively
preconditioned (Saad, 1996), prove quite efficient in the solution of large size problems (Gambolati et al.,
1996). Unfortunately, the scaling strategy mentioned above, while probably giving good results with direct
techniques, may appear to be inefficient when used with projection methods.

A deeper analysis of the correlation existing between the time step and the physical parameters de-
scribing the consolidation problem is offered by Vermeer and Verruijt (1981) who define a lower bound for
At below which numerical oscillations in the solution may appear. This stability condition is based on the
observation that the excess pore pressure due to an instantaneous load applied on a draining porous
column cannot exceed the load itself.

In the present paper we investigate the numerical factors which may influence ill-conditioning of the
linear systems arising from the FE integration of coupled poroelastic models. A simple argument is given to
account for the inception of ill-conditioning vs. the size of A¢ with the definition of a critical time step
below which ill-conditioning suddenly occurs. We show that the concept of At is basically related to
the difficulty of finding the solution rather than to the accuracy of the solution itself, which may
prove quite accurate also for time steps smaller than the critical At provided that one is willing to pay a
sufficiently high computational cost. Finally, some numerical examples are given to substantiate the the-
oretical arguments.

2. Finite element formulation of Biot consolidation equations
According to Biot’s (1941) formulation, as later modified by van der Knaap (1959) and Geertsma (1966),
the coupled model for an isotropic medium reads:

0 0
(+ )5+ OV = i=xy.z (1)
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%V(kVp) = [n[?Jrcbr(otfn)]%Jroc%, (2)

where ¢y, and f§ are the volumetric compressibility of solid grains and water, respectively; n is the porosity; k
is the medium hydraulic conductivity; € is the medium volumetric dilatation; « is the Biot coefficient; 4 and
G are the Lamé constant and the shear modulus of porous medium; y is the specific weight of water; V is the
gradient operator; x, y, z are the coordinate directions and 7 is time; p and u; are the incremental pore
pressure and the components of incremental displacement along the i-direction, respectively.

The widely accepted assumption of rigid solid grains (cp, = 0 and o = 1) (Verruijt, 1969) leads to a more
familiar form of Eq. (2):

p o

1 0
;V(kVp) =npg (3)

FE solutions to the coupled Egs. (1) and (3) were originally developed by several authors (Sandhu and
Wilson, 1969; Christian and Boehmer, 1970; Hwang et al., 1971; Desai, 1975; Sandhu, 1976; Smith and
Hobbs, 1976; Verruijt, 1977). Integration in space yields a system of first-order differential equations which
can be written as:

K —-O|[u 0O Oo(fal _[f"
o o PG ®
where K, H, P and Q are the elastic stiffness, flow stiffness, flow capacity and coupling matrices, respec-

tively; { " } and { ¥\ are the vector of the unknown variables u; and p and corresponding time derivatives;

{;1, } is the vector for the nodal loads (f*) and flow sources (f7).
The explicit expressions of the above matrices are given in Appendix A.
Eq. (4) can be written in a more compact form as:

K1x+K25c+f:0, (5)

where the meaning of the symbols can be derived by a simple comparison between Eqgs. (4) and (5). Ap-
plying the 6-method marching scheme to solve Eq. (5) yields:

1 |

0K+ 4o s = | K = (1 0K, = (0,0 + (1 007, ©
Eq. (6) constitutes the linear system which is actually solved to find the displacement and pore pressure
fields in time domain. The non-symmetric matrix arising from coupled poroelastic models takes on the

following expression:

1 0K  —00Q

A= 0K +—K| = 7
R g g

which may become ill-conditioned for small values of the time step Az as will be shown in Section 3.

3. Definition of a critical time step At

Let us consider a classical linear system Ax = b where the matrix A is defined by Eq. (7). As was pre-
viously observed, in realistic simulations the number of nodal unknowns may be very large and the use of
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Fig. 1. Typical behavior of the number of iterations N when the time step Az is decreased in a consolidation problem: (a) no ill-
conditioning; (b) ill-conditioning occurs for At < At

an efficient projection solver appears to be quite appropriate. In the present paper we elect to use the al-
gorithm Bi-CGSTAB (van ver Vorst, 1992) effectively preconditioned with the incomplete factorization
with zero fill-in ILU(0) (Kershaw, 1978). We study the behavior of Bi-CGSTAB vs. Ar and expect the
number of iterations N for convergence to increase significantly when At = At;.

Convergence is controlled by the relative norm of residual vector set to 107! in the experiments that
follow. When At is changed, N behaves in the two typical ways graphically depicted in Fig. 1. Inspection of
this figure suggests that the matrices arising from coupled poroelastic models may be divided into two
classes:

e type a: N is approximately stable around an average value N for any At however small (Fig. 1a);
e type b: NV is stable for At > At When At = At.;; N suddenly increases to a new larger value N*. For
At < Aty, Bi-CGSTAB may either still converge in N ~ N* iterations or break down (Fig. 1b).

If the matrix 4 exhibits a “‘type a” behavior, then we may argue that it is well-conditioned for any time
step and that a lower bound for Az does not exist. By contrast, if the matrix A4 exhibits a “‘type b”” behavior,
then ill-conditioning occurs at small time steps. In particular, Az is defined as the largest Az for which the
number of iterations increases to N* much larger than N.

3.1. Theoretical estimate of At

In an ill-conditioned system two or more rows are nearly parallel. For example, the 2 x 2 matrix:

g = ay  an
az dax
is ill-conditioned if we have:
an  an

~=2. (8)

d  axn
Let us try to extend the above condition to the poroelastic matrix (7). Applying Eq. (8) to the elements of
the four blocks forming matrix 4 (see Eq. (7)), ill-conditioning is likely to occur if the coefficients of rows i
and m satisfy the equation:
0Ky = —00x

~ i=1,....ny k=1,... 1y, 9
Q_;/ 0Hmk+% / P ()
At
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where n, and n, are the number of unknowns for nodal displacement and pore pressure, respectively. Eq.
(9) can be interpreted as a condition depending upon At¢. The critical time step At is by definition the Az
which satisfies Eq. (9).

The discussion about the existence of Az, may be developed as follows. Write Eq. (9) as:
0K —At0Qy

sl Vp— Ri(AY) ~ R, (At
i AOH, .+ Py = R4y (A1)

and regard the above equation as a function of Az only. It is observed that Rj(A¢?) is a linearly increasing
function of Az while R,(A¢f) is a hyperbolic function with a horizontal asymptot for At — co (Fig. 2). An
intersection between R; and R, exists only if (Fig. 2):

dR; dR,
— . 10
[dAthw = [dm} 10

Eq. (10) can be easily converted to

GKU —9 Q,‘k
. Pmk

mj

(1)

which represents a somewhat necessary condition for the existence of At.;.

We now try to roughly estimate the magnitude of the terms belonging to the blocks which form the
global matrix 4. Ignoring the influence of the element geometry, the K coefficients are proportional to those
of the elastic stress strain matrix D (see Appendix A), and hence have the same order of magnitude as the
Young modulus E. For the sake of simplicity, we assume a value for the Poisson ratio v = 0.30 so that E'is
the only representative mechanical parameter. Similarly, the H coefficients are approximately proportional
to k/y while the P coefficients can be represented by 4nf, where 4 is a characteristic dimension of the finite
element grid. In three-dimensional (3-D) problems, 4 may be interpreted as the element volume, while in
two-dimensional (2-D) or 3-D axisymmetric problems 4 is an estimate of the element area. As an example,
we focus on an axisymmetric porous medium discretized into elements with triangular cross-section, so 4
can be regarded as the triangle area. The Q terms in axisymmetric problems can be locally viewed as the

R.R

At grit At

Fig. 2. Qualitative behavior of left-hand side R, and right-hand side R, of Eq. (9) vs. At and ¢ = nfE.



6000 M. Ferronato et al. | International Journal of Solids and Structures 38 (2001) 5995-6014

projection of the triangle boundary over the coordinate directions (Gambolati et al., 2000a), and so they
can be approximated by /4. Similar rough estimates for the coefficients of each single block have been
recently used by other authors as well (Sloan and Abbo, 1999).

Substituting the above approximations into Eq. (9) and disregarding the minus sign on the right-hand
side leads to:

0E 0v A
VA T pk _y 4np
a0k

from which, looking for an explicit expression of Az, we obtain:

1 —nfE\ 4y
0 kE~

At = Aty =~ ( (12)

It can be easily verified that the right-hand side of Eq. (12) has the unit of a time, as was expected, with
((1 —npE)/0) a dimensionless factor.

By the way in which it has been derived, Eq. (12) represents a very crude estimate of the critical time step.
Nevertheless, Eq. (12) may prove able to capture the basic relation between Af.; and the physical pa-
rameters of the porous medium (E, k, n and f§) through a characteristic measure of the triangulation (4).
More generally, we can write At as:

4y
kE
with y = nfE and y an unknown dimensionless factor depending upon v, 0 and the shape and resolution of
the mesh. So Eq. (13) may be viewed only as a qualitative equation which cannot be practically used to
assess the accurate critical time step but can supply interesting information on the factors which affect Af,.

From Eq. (11) we can derive a necessary condition for the existence of Af;. If we replace in Eq. (11) the
aforementioned approximations for the coefficients we obtain:

E V4
—=<¥y——
NZIATY

where |/ is an unknown factor which accounts for the quantities we have neglected in our crude estimate.
Basically, y depends upon the shape of the triangles and to a lesser extent on the Poisson ratio. From Eq.
(14) we get:

nBE <y = Y <. (15)

A graphical interpretation of the implication Eq. (15) is given in Fig. 2.

Thus, it can be argued that a  value exists for y above which the matrix 4 will always be well con-
ditioned and will show the “type a”” behavior of Fig. 1. By distinction, when y < i matrix 4 will show the
“type b’ behavior with a critical time step that, according to Eq. (13), is expected to increase for coarser
grids and less permeable and softer porous media. However, deviations from this conceptual scheme are
possible in difficult problems depending on the actual behavior of the unknown function y.

Al‘crit = X(lpae) (13)

(14)

3.2. Subcritical and super-critical At

Eq. (13) defines the critical time step yielding ill-conditioning but does not explicitly give an indication as
to the matrix conditioning when Af # At.;, i.e. when Ar > At (super-critical time step) or Ar < Afqy
(subcritical time step).
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Fig. 3. Qualitative behavior of the ratio R /R, vs. the time step At.

The problem conditioning depends primarily on the ratio R;/R,. As can be seen from Fig. 2, for
At > Atei Ri/R, grows with the time step size, so the matrix parallelism reduces and the system is conse-
quently well conditioned. By distinction, for At < At,; Ri/R, may remain close to 1 for any As and con-
ditioning can still be critical, as is illustrated in Fig. 1b and will be shown later with practical examples.

Another interesting remark can be derived from the analysis of Fig. 3 which graphically represents the
behavior of R|/R; vs. At. Irrespective of the existence of Az, Eq. (9) shows that R;/R, stabilizes when A¢
goes to zero as the directions of the matrix rows are practically preserved, hence conditioning does not
change. When R, /R, ~ 1 (solid profiles of Fig. 3) the critical condition has been achieved and the numerical
problem becomes ill-conditioned with possible ill-conditioning for any At < At,;;. When R|/R; is always
larger than 1 (dashed profiles of Fig. 3) Az, does not exist and conditioning is good for any A¢ value.

3.3. Comparison with critical time steps by other authors

In the previous sections, we have discussed a critical time step At below which the numerical solution
to the FE consolidation model may become difficult because of ill-conditioning. A different lower limit for
At was derived by Vermeer and Verruijt (1981) by prescribing a condition to limit the development of
numerical oscillations of the pore pressure solution in a porous column subject to an instantaneous load.
This bound was explicitly calculated for one-dimensional (1-D) consolidation as:

1 (Ah)’

At > ,
12% 0c

\

where c is the so-called consolidation coefficient and A% a characteristic size of the FE grid. Consistent with
the notation used in the present paper, we can write:

et np) A=A

with ¢, the vertical soil compressibility. As is well known:

(1+n1-201 1

M=V EE
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and the lower Af bound according to Vermeer and Verruijt (1981) is:

A 14 y(1+npE) _ (1+u//>ﬂ

60 kE 60 ) kE’
that is
/ Ay
Al‘crlt =X (l//7 H)k_E (16)

This outcome is obtained for 1-D problems but the authors argue that a similar expression holds true for
2-D and 3-D problems as well.

It is interesting to observe that, although the critical time step has a different implication in the two
derivations, Eq. (16) of Vermeer and Verruijt (1981) is surprisingly similar to our Eq. (13). The main
difference consists of the behavior of the weighting factor ' vs. . In fact, while in our case a ¥ value may
be found above which there is no At yielding ill-conditioning, Vermeer and Verruijt (1981) ' can never be
zero or negative, and hence a lower bound for the solution stability always exists in their derivation.

Another interesting remark can be made for the case of an incompressible fluid ( = 0). Even though this
assumption can be disputed on physical grounds (Chierici, 1989), it has been used by a number of authors
in coupled poroelastic problems (Ghaboussi and Wilson, 1973; Reed, 1984; Lewis and Schrefler, 1987;
Sloan and Abbo, 1999) and is quite acceptable in shallow compressible rocks. According to the present
development, if f = 0 then y = 0 < ¥ (see Eq. (15)) and so y = y, > 0. Thus the critical time step turns to
be:

_ Ay
~loyg

and it does exist for any poroelastic problem. This conclusion was first remarked by Ghaboussi and Wilson
(1973) who also suggested a criterion for the choice of a minimum A¢ value. The criterion of Ghaboussi and
Wilson (1973) is based on the assumption that the greatest difficulties are met in stiff and low permeable
porous media. However, the present analysis provides evidence that the critical time step is not related to
E/k but rather to 1/(kE). This implies that if, for example, £ = 10* kg/m? and k = 10~* m/s (compressible
and permeable soil) conditioning is worse than with £ = 10% kg/m? and k = 10~7 m/s (stiff and low per-
meable soil).

The numerical examples discussed below show clearly that stiff porous systems are generally better
conditioned than soft media, irrespective of permeability, i.e. quite different from the outcome of Gha-
boussi and Wilson (1973).

Al‘crit ( 1 7)

4. Numerical results

A number of numerical experiments have been performed to substantiate the above theoretical argu-
ments. An axisymmetric poroelastic problem is considered with a unit pore pressure decline prescribed at
the middle node of the symmetry axis. The 1000 x 2000 m domain of Fig. 4 is variably discretized into
triangular elements. Standard Dirichlet conditions with zero displacement and pore pressure change on the
outer and bottom boundaries, zero radial displacement on the symmetry axis, and zero pore pressure
decline on the top boundary are prescribed (Fig. 4). The porous medium is assumed to be fully saturated by
groundwater (y = 1000 kg/m?, B =4 x 10~ cm?/kg) with a uniform porosity n = 0.28 and Poisson ratio
v = 0.30. Finally, an Euler backward marching scheme is adopted (0 = 1).

According to Eq. (13) and with the previous assumptions the critical time step basically depends upon
the three parameters E, k and 4. The numerical experiments can thus concern three problems:
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Fig. 4. Cross-section of the axisymmetric poroelastic sample problem with the indication of geometry, boundary conditions and
(regular) triangulation.

e problem I: k varies with E and 4 constant (constant );
e problem 2: A varies with E and k constant (constant /);
e problem 3: E varies with k and 4 constant (variable /).

Furthermore, problems 1 and 2 are split into two parts (problems la, 1b and 2a, 2b) accounting for two
different values of E, yielding (a) i smaller and (b) y larger than .

The matrix conditioning in each numerical experiment is measured by the use of the following indexes
(Westlake, 1968):

A1
| 2]
12
[T (X e
p_ T (Sad) (19)

| det A| ’

where 2, and 4, are the maximum and minimum eigenvalue of the matrix 4 and a;; the 4 coefficients. IlI-
conditioning of matrix A is indicated by large values of both L and D.

The behavior of L and D vs. At is studied and is related to the Bi-CGSTAB rate of convergence. Ob-
viously, we expect L and D to increase significantly for Az = Az, and correspondingly Bi-CGSTAB to
converge much more slowly or even to fail.

4.1. Problem la: changing k with W <

We assume a homogeneous porous medium with a stiffness such that yy = 0.022, which corresponds to
E =2 x 10° kg/em?, a typical value of the sediments of the upper Po river basin, Italy (Gambolati et al.,
2000b). A regular triangulation is used with Ar = Az =25 m, and 4 = 312.5 m?.

Fig. 5 gives the number of iterations N and index L vs. A¢. The critical time step is easily identified with
both N and L growing when the problem becomes ill-conditioned. The value of the unknown factor y (Eq.
(13)), depending upon s (i.e. ultimately on E), 0 and the shape and resolution of the grid, can be back
calculated from the experimental Az, found in the first simulation with k = 10~* m/s, thus obtaining
% = 6.4 x 1073, By the use of this value the theoretical At for the other two problems is computed and
compared in Table 1 with the experimental Af.;, pointing out an excellent agreement.
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Fig. 5. Problem la: number of iterations N and index L vs. At for iy = 0.022, 4 = 312.5 m? and (a) k = 107* m/s; (b) k = 10~7 m/s; (c)

k=10"" m/s.

Table 1

At(s)

Problem la: experimental and theoretical Aty vs. k with = 0.022 and 4 = 312.5 m? using 7 = 6.4 x 1073 back calculated from the
problem with k = 10~* m/s

k (m/s) Theoretical Aty (s) Experimental Az (s) N N*

10~* - 1 110 490
1077 10° 103 130 550
10710 10° 10° 130 520

Table 2 provides ||, |4,| and L for the sample problem with & = 10~* m/s. It is interesting to observe
that the L increase is due to an increase of |4,| while |4,| remains practically stable. Index D is shown in Fig.
6. As expected D achieves its maximum value for At = At.;; thus providing evidence that some matrix rows
are nearly parallel (when they are exactly parallel det4 = 0).
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Table 2
Problem la: maximum and minimum eigenvalue of 4 for y = 0.022, 4 = 312.5 m? and &k = 10~* m/s
At (s) [21] [ 2] L
10 1.03 0.26 x 1072 396
10° 1.37 0.39 x 1072 351
103 1.38 0.75 x 1072 184
10% 1.51 0.69 x 1072 219
10! 3.97 0.46 x 1072 863
10° 8.87 0.30 x 1072 2957
107! 12.3 0.26 x 1072 4731
1072 12.8 0.26 x 1072 4915
1073 13.5 0.26 x 1072 5204
107¢ 13.6 0.26 x 1072 5223
30000
25000 — T
20000 n <
(a] \\\
3 15000
©
£
10000
—— k=10"m/s
5000—— - k=10" m/s
----- k=10"" m/s L ||
o T T T
10° 10° 10° 10"
At(s)

Fig. 6. Problem 1la: index D vs. At for = 0.022, 4 = 312.5 m? and different k values.

A non-homogeneous case has also been addressed for a stratified porous medium with alternating sand
and clay layers (k = 10~* and 1077 m/s, respectively). The N and L values are supplied in Fig. 7. Note that
ill-conditioning is found for At = 1 s (the same At as for the homogeneous case with k£ = 10~* m/s) with
some probable ill-conditioning also for a very large A¢. Table 3 gives the maximum and minimum eigen-
values for the non-homogeneous problem. Inspection of Table 3 suggests that ill-conditioning occurring at
At = Aty 1s due to an increase of |1;| as in Table 2 while ill-conditioning at the largest At is related to a
decrease of |4,].

4.2. Problem 1b: changing k with \y >

In this section the same simulations as in Section 4.1 are performed, except for E which is increased
by one order of magnitude (F = 2 x 10* kg/cm?) with i = 0.22. The experimental results are reported in
Fig. 8 and Table 4. In these examples matrix 4 exhibits the “type a”’ behavior of Fig. 1. This choice of E
produces / >  and so, as is theoretically expected, there is no Az.; and A4 is well conditioned for any time
step size.
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Fig. 7. Number of iterations N and index L vs. At for the non-homogeneous problem with iy = 0.022, 4 = 312.5 m? and k equal to 10~/
m/s (clay) and 10~* m/s (sand).

Table 3
Non-homogeneous sample problem: maximum and minimum eigenvalue of 4 for y = 0.022, 4 = 312.5 m? and k equal to 1077 m/s
(clay) and 10~* m/s (sand)

At (s) [21] [ 7] L

101 1.03 0.26 x 1073 3960
10° 1.37 0.18 x 1072 761
10° 1.40 0.74 x 1072 189
10? 2.07 0.71 x 1072 329
10! 5.29 0.40 x 1072 1323
10° 10.4 0.28 x 1072 3714
107! 13.1 0.26 x 1072 5038
1072 13.4 0.26 x 1072 5154
1073 13.6 0.26 x 1072 5231
10-¢ 13.6 0.26 x 1072 5231

4.3. Problem 2a: changing A with \y <

We assume a homogeneous medium with £ = 2 x 103 kg/cm? (y = 0.022) and k = 10~* m/s and analyze
the influence of 4 on conditioning by changing the radial spacing Ar or the vertical spacing Az or both. The
main results are summarized in Table 5. It may be observed that the way in which the 4 variation is im-
plemented has some influence on the matrix behavior. In particular, comparison of the second and third
rows of Table 5, where 4, is approximately the same, shows that a variation of Ar is much more sig-
nificant on Af,; magnitude than a variation of Az. This is probably due to the fact that in axisymmetric
problems the volume integration over the annular elements is more influenced by r rather than by z
(Gambolati et al., 2000a). Nevertheless, we can note that, if 4 varies because Ar varies (first and second
rows of Table 5), then Eq. (13) still substantially holds as At,; change is almost proportional to the
variation of A,,,. Also observe that At of the fourth row is equal to that of the first row although A, of
the former is much larger than that of the latter since the smaller elements of a non-uniform mesh attenuate
the effects of the larger ones.

Fig. 9 shows the results corresponding to Ar and Az of the second row of Table 5 with the others very
similar except for the problem with a uniform mesh which is the same as that of Fig. 5a. It might be
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Fig. 8. Problem 1b: number of iterations N and index L vs. At for yy = 0.22, 4 = 312.5 m? and: (a) k = 10~* m/s; (b) k£ = 1077 m/s; (c)

k=107 mf/s.

Table 4

Problem 1b: experimental At.; vs. k with i = 0.22 (y > ) and 4 = 312.5 m?

k (m/s) Experimental At (s) N N*
1074 - 100
1077 - 110 -
10710 - 120

Table 5

Problem 2a: experimental Afei VS. Amay With ¥ = 0.022 and k = 10~* m/s
Ar (m) Az (m) Amax (M?) Experimental At (s) N N*
25 25 312.5 1 110 490
2-396 10 1978.5 10 130 Failure
20 1-200 2000 1 110 Failure
1-189 0.5-200 18910 1 150 Failure
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Fig. 9. Problem 2a: number of iterations N and index L vs. At for y = 0.022, k = 10~* m/s and 4, = 1978.5 m? (variable radial
spacing Ar).

observed that, for At < Az, the ill-conditioning is so severe that Bi-CGSTAB fails to converge (exhibiting

either an incredibly slow convergence rate or a diverging residual) and the index L takes on a very large
value.

4.4. Problem 2b: changing A with >

We address the same sample problems as in Section 4.3 with £ = 2 x 10* kg/cm? and y = 0.22. Similarly
to Section 4.2, we would expect Y > with no critical time step.

The main results are summarized in Table 6. We can note that one example produces a At;. This should
be no surprise since 1/ is sensitive to the element geometry, and so most probably the new discretization of
this example is such that 1/ does not exceed 1.

Fig. 10 shows the results corresponding to Ar and Az of the second and third rows of Table 6 since the

case with the uniform mesh is the same as in Fig. 8a and the remaining test case behaves similarly to Fig.
10b.

4.5. Problem 3: changing E

In this final group of computational experiments we study the influence of a variation of E, and hence of
¥, within a mechanically heterogeneous porous medium. To simulate a realistic configuration, the com-
pressibility profile vs. z of the sedimentary Po river basin, Italy (Gambolati et al., 2000b) is used and

Table 6

Problem 2b: experimental At vs. At with yy = 0.22 and k = 10~ m/s
Ar (m) Az (m) Amax (M%) Experimental N N*

Atcm (5)

25 25 312.5 100 -
2-396 10 1978.5 107! 200 Failure
20 1-200 2000 150 -
1-189 0.5-200 18910

- 110 -
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different examples are generated by properly scaling this profile. We assume k& = 10~* m/s throughout and a
uniform mesh with Ar = Az =25 m and 4 = 312.5 m?.

The behavior of N, L and D vs. At is supplied in Figs. 11 and 12 where Af,; may be easily found.

Table 7 summarizes the most significant results and provides as a reference E value the smallest (i.e. the
shallowest) one. The overall E variation with z is about two orders of magnitude. Careful inspection of
Table 7 reveals that Eq. (13) substantially holds true, and there is no critical time step as long as the stiffness
is adequately increased such that y > . It should be noted that the global effect of the mechanical het-
erogeneity is that of offsetting the influence of the smaller Young moduli.

5. Suggestions for remediating ill-conditioning

Ill-conditioning of FE poroelastic equations can be so severe that a projection solver may fail to con-
verge, as is indicated by a few sample problems discussed in the previous section. In these examples the
common scaling algorithm as is usually implemented (i.e. scaling by the diagonal term) appears to be quite
ineffective. In fact, while it may yield a little acceleration of convergence when the solver works, it gives no
benefit when it breaks down.

The present analysis may suggest that ill-conditioning can be avoided by changing the mesh resolution so
as to produce a At (see Eq. (13)) smaller than the minimum A¢ required by the simulation. A practical way
to estimate a priori At in a coupled poroelastic problem is to analyze the behavior of the ill-conditioning
index D vs. At, which is quite inexpensive. As can be seen from Figs. 6 and 12, At is roughly denoted by
the beginning of the leftmost flat portion of the curve.

Finally, a way to solve severely ill-conditioned problems might be improving the quality of the pre-
conditioner. For example, the incomplete LU factorization with threshold strategies (ILUT) preconditioner
(Saad, 1994), although usually more expensive than other preconditioners such as ILU(0), which is used in
the present analysis, may sometimes succeed in converging when ILU(0) leads to failure. As an example, a
comparison between the convergence profiles of Bi-CGSTAB preconditioned with ILU(0) and ILUT, using
optimal fill-in level and tolerance parameters (see for instance Saad (1996)), is shown in Fig. 13 for two
test cases discussed in Section 4. Note that preconditioner ILUT allows for a significant acceleration of
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Table 7
Problem 3: experimental At vs. E for a compressibility profile similar to that of the Po river basin with £ = 10~* m/s and 4 = 312.5
m?. The smallest (i.e. shallowest) E value is given

Enin (kg/m?) Vinin Experimental At.; (s) N N*

6 x 10* 8 x 1073 10 130 Failure
6 x 10° 8 x 107* 1 90 Failure
6 x 10° 8 x 1073 107! 90 270

6 x 108 8 x 107! - 65 -

—— Bi-CGSTAB + ILU(0)
--- Bi-CGSTAB + ILUT

(a)

10°—

relative residual norm
relative residual norm

10"

' ' ' ' ' 0 1000 2000 3000 4000 5000
0 100 200 300 400 500

number of iterations N

number of iterations N

Fig. 13. Comparison between the convergence profiles of Bi-CGSTAB preconditioned with ILU(0) and ILUT for the problems: (a)
regular mesh (Ar = Az=25m, 4 =312.5m?), k= 1077 m/s and E = 2 x 107 kg/m? with Az = 107" s (At < Aty = 10° s); and (b)
regular mesh (Ar = Az =25m, 4 =312.5m?), k = 10™* m/s and Epi, = 6 x 10* kg/m? with At = 1 s (At < At = 10 s).

convergence in a difficult problem (Fig. 13a) and for convergence in a problem where ILU(0) practically
fails (Fig. 13b).

6. Conclusions

In the FE solution of coupled poroelasticity problems difficulties can be encountered for small time
integration steps At because the global matrix 4 may be ill-conditioned. For a given problem and a given
grid conditioning of 4 depends on Az. A critical value Atz may exist for which ill-conditioning occurs and
persists also for At < Atyy. Under such circumstances the FE equations may be difficult to solve with
preconditioned conjugate gradient like solvers, such as Bi-CGSTAB, experiencing a slow convergence or
even failure. An empirical expression for At is derived showing that:
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o Aty is larger when coarser finite element meshes are used;

¢ in axisymmetric problems, conditioning of A4 is especially sensitive to the variation of the radial spacing;

e contrary to what one might expect stiff low permeable porous systems are not necessarily ill-conditioned
since Aty depends upon the inverse of the product kE through a weighting unknown factor y and can be
quite small if F is large;

e conversely, soft highly compressible media may be characterized by a relatively large At.; and hence dif-
ficult to solve at early time values;

e if f 0 (i.e. compressible fluid), a limiting stiffness of the porous medium exists such that for stiffer sys-
tems there is no critical time step;

e if f =0 (i.e. incompressible fluid), a critical time step always exists which is inversely proportional to kE.

The occurrence of ill-conditioning has been proven using both the convergence rate of Bi-CGSTAB and
the conditioning numbers L and D with the results in substantial agreement. For the most severe ill-con-
ditioned problems Bi-CGSTAB preconditioned with ILU(0) may fail to converge. For less severe Bi-
CGSTAB may still converge but the computational cost to get the solution can increase significantly.
Finally, some recommendations are given for remediating at least in part the problem of ill-conditioning.
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Appendix A. Mathematical background

A brief summary of the main analytical expressions used in the paper is given below.
Using the classical finite element formulation for elastic continuum (Zienkiewicz and Taylor, 1989;
Zienkiewicz, 1991), we can define:

6 = De
€ = LN,u = Bu
p=Nyp

and coupling the principle of virtual works with Terzaghi’s effective pressure (Terzaghi and Peck, 1967)
yields:

</VBTDBdV>u— (/VBTindV>p:f"

where i is the Kronecker o in vectorial form.
The flow equation can be integrated using the classical Galerkin method:

<§ /V (VNP)(VNP)TdV>p+ (/VNpTiTBdV>i4+ (nﬂ/VNpNJdV)pzf”.
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Finally:

K = /BTDBdV,
Vv

0= /BTindV,
14

H= %‘/V(VNP)(VNP)Tdn

P= nﬁ/NprTdV.
14

For more details, see Ferronato et al. (2000).
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